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Abstract 

Data from a digital seismological network operating during April–July 2002 were used for the 
microseismicity study of the area around Chios Island (East Aegean Sea, Greece). Numerous 
microearthquakes were detected and more than 950 well–located hypocenters were obtained 
along with 96 reliably determined focal mechanisms. The epicentral distribution and focal 
mechanisms of several earthquakes revealed that the NE–SW striking dextral strike–slip faults 
dominate in the study area as is the dominant pattern in North Aegean Sea. An earthquake swarm 
near Psara Island and a cluster offshore the west coast of Chios Island are associated with NW–
SE trending left–lateral strike–slip faults, orthogonal to the dextral ones. Near the west coast of 
the Island the microseismicity evidences that oblique faulting dominates, whereas onshore and 
offshore the North Chios Island, clusters of events manifest the activation of either E–W or N–S 
striking normal faults. This complex deformation pattern is the manifestation of the dextral strike–
slip faulting termination against conjugate sinistral ones, the transition from strike–slip to normal 
through the oblique faulting, as well as the activation of biaxial normal faulting in places.  

Key words: conjugate strike–slip and normal faults, transition zone, Chios Island, North Aegean 
 

1. Introduction  

The study area occupies the eastern central part of the Aegean microplate (Fig. 1) a highly de-
formed extensional back–arc area. The subduction of the eastern Mediterranean oceanic plate un-
der the Aegean microplate (Papazachos and Comninakis, 1970, 1971) and the westwards motion 
of the Anatolian microplate along the North Anatolian fault (McKenzie, 1970, 1972, 1978) condi-
tion the deformation pattern in this area. The motion of the Anatolian microplate is transferred in 
the Aegean area as a simple translation, taking place along the central and southern part of the 
coasts of Turkey and the neighbouring Greek islands. The Aegean moves almost uniformly in a 
SSW direction (~200–220o) with an average velocity of ~30mm/yr, which increases from 
25mm/yr in the central and southern part of the western coast of Turkey to 30–35mm/yr near the 
south western part of the Hellenic arc (Papazachos, 1999), with the significant increase being due 
to the strong N–S extension in the Aegean and western Turkey (McClusky et al., 2000). As a result 
of these motions, the northern Aegean is dominated by dextral strike–slip faulting of northeasterly 
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strike, co–existing with normal faulting. Both faulting types are consistent with several fault–plane 
solutions of recent strong earthquakes (Papazachos et al., 1998) as well as neotectonic observa-
tions (Tranos, 2009). 

 

Fig. 1 Main seismotectonic properties of the Aegean and surrounding regions. The study 
area is denoted by a rectangle. 

The structure of the area east of Chios Island was investigated by seismic reflection exploration 
evidencing that the active deformation of both onshore and offshore western Turkey is dominated 
by crustal extension, whereas strike–slip was evidenced too. The latter is considered to be of 
greater importance than previously thought (Ocakoğlu et al., 2004). Approximately E–W trending 
grabens and their basin–bounding active normal faults are the most prominent neotectonic features 
of this part of western Turkey that is currently experiencing an approximately N–S continental 
extension at a rate of 30–40 mm·year-1 (Bozkurt, 2001), and is no faster than ~0.5 mm·year-1 
across any individual active normal fault (Westaway, 1994). This extension is related to the 
spreading and thinning of the crust immediately after the cessation of the Palaeogene shortening 
(Seyitoğlu and Scott, 1996). 

The intense seismic activity in the study area is substantiated by numerous historical earthquakes, 
with the 1881 (6.5) being the most murderous earthquake in the Greek territory (Papazachos and 
Papazachou, 2003). During the instrumental period, Chios Island has been struck twice and close 
in time, in 1941 (M6.0) and 1949 (M6.7). The 1881 and 1949 earthquakes, the stronger more re-
cent events in the study area, ruptured the South Chios and North Chios normal faults, respectively 
(Papazachos et al., 2001), and caused tsunamis that affected the coasts of Chios Island and Cesme 
(Altinok et al., 2005). 

Microearthquake activity and its relation with the faulting pattern in the study area were not 
studied up to now. Accurate earthquake location was difficult to be achieved when using 
teleseismic records, since uncertainties in the structure of the crust and upper mantle can result in 
errors in earthquake locations of a few tens of kilometres if local or close regional seismological 
stations are absent. Such errors prevent precise correlations of seismicity with active faults. The 
purpose of the present study is the exploitation of data collected by a temporary network of nine 
digital seismological stations that were installed and operated for three months on Chios and 
neighbouring islands. Their hypocenters, located as much accurately as possible, and fault plane 
solutions determination, contribute to investigate the local seismic activity and fault kinematics. 
Even though microseismicity is not completely representative of the properties of the major faults 
associated with strong earthquake occurrence, it may provide valuable information for defining the 
seismotectonic properties of an investigated area. 
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2. Geology of Chios Island 

The Island of Chios represents the most proximal to the Anatolian microplate part of the Aegean 
microplate. It has the shape of upright bin with the central northern parts to form a mountain ter-
rain (Pelineon Mt.) striking NNE–SSW (Fig. 2). The island consists of pre–alpine and alpine rocks 
that grouped into two units (Zanchi et al., 2003): The Lower Unit (autochthonous of Besenecker et 
al., 1968) includes siliclastic turbidites and embedded olistoliths of Silurian to Carboniferous rocks 
and a Mesozoic carbonate succession, and the Upper Unit (allocthonous, Besenecker et al., 1968), 
which occurs in isolated klippen, displaced by faults related to the Neogene Aegean extension. It 
includes Upper Carboniferous turbidites, Lower Permian sandy to marly carbonates and Middle 
Permian shallow–water limestones, overlain by red siltstones and Jurassic platform carbonates. 

Late Tertiary metamorphic collapse of Cordilleran type processes dominated the Cycladic archi-
pelago and caused a major shallow–dipping ductile shear zone at the deeper levels and low–angle 
normal faults in its upper levels elongate domes over which a pervasive N–NNE–stretching linea-
tion is warped (Lister et al., 1984). The succeeding neotectonic evolution of the Aegean Sea con-
cerns WNW–ESE steeply dipping normal faults and NE–SW strike–slip faults that form elongate 
submarine basins (Kilias et al., 1998). To the east of the study area, i.e. the Minor Asia region is 
dominated by E–W large active faults that bound similarly oriented elongated valleys along which 
an intense seismic activity is well established (Ocakoglu et al., 2004). This deformation is related 
to an approximately N–S continental extension at a rate of 30–40 mm·year-1 (Bozkurt, 2001). 

The geological mapping of the island of Chios (Besenecker et al., 1971) figures out a fault pattern 
that is mainly dominated by NNE–SSW faults and WNW–ESE to NW–SE along which several 
geologic formations have been horizontally separated, thus implying the significance of the strike–
slip component of displacement. On the other hand, our fault mapping through the Landsat satel-
lite imagery, which was mainly based on the well used morphotectonic criteria associated with 
faults, suggests that the recently formed fault pattern is mainly dominated by NE–SW and E–W 
striking faults. More precisely, the mapped NE–SW faults seem to be the major faults of the island 
that have been embraced at parts the previous NNE–SSW fault segments, whereas the E–W faults 
are of smaller length and are limited by the presence of the NE–SW striking faults (Fig. 2). 

 

Fig. 2 Simplified structural map of Chios Island showing the fault pattern according to (a) 
the geological map at scale 1:50.000 (Bescenecker et al., 1971), (b) the geological map pre-
sented by Zanchi et al. (2003), and (c) our interpretation of the satellite imagery. 

One of the most important NE–SW faults hence named the Chios fault is the one running along the 
SE mountain front of the Pelineon Mt. This fault with a length of at least 7 km runs close to the 
Northern suburbs of the Chios city (Vrontados area) and is characterised by recent activity, since it 
has affected such young deposits as Quaternary. Besides, strike–slip slickenlines have been ob-
served to be overprinted by dip–slip slickenlines along fault surfaces, entailing a normal activa-
tion.  
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3. Data and procedures 

We analysed the P and S wave arrival times and P wave first motions from a local network that 
was installed and operated in the area during April–July 2002. The seismic network consisted of 
nine 3–component stations equipped with broad–band sensors, all connected to GPS antenna for 
timing. The first choice was to place the network on Chios Island (April–June) in order to locate 
the microseismicity on the Island as much accurately as possible, with station spacing about 10 km 
(Fig. 3, left). During the second phase of the experiment, two stations were moved to the nearby 
Oinouses and Psara Islands, the latter being an area with very high seismic activity (Fig. 3, right). 
The stations operated in continuous mode with a sampling frequency of 125 Hz, allowing the de-
tection and location of 868 events both on land and offshore. 

  

Fig.3 Locations of the portable seismological stations during the first phase (left part) and 
the second phase (right part) of the experiment. Stations with code names PSAR and OINO, 
are positioned on Psara and Oinouses Islands, respectively. 

Arrival time data from the detected events were considered, and by the use of a regional velocity 
model (Panagiotopoulos, 1984), the best located events were selected in a procedure to define a 
local velocity model. The criteria applied for dataset selection were the minimum phase number to 
be no less than 10, the distance to the closer station smaller than 20 km and the “gap” less than 
200o. Accurate solutions considered the ones having a root–mean–square residual (rms) less than 
0.4 s, a horizontal location and a depth error both less than 5.0 km. In addition to these criteria, the 
most important one was the solution stability, i.e., the solution being immutable independently of 
the input crustal model or the initial focal depth. Thus, 43 events were selected and used to con-
struct travel time curves, and after repetitive iterations a local velocity model was obtained (v1=5.6 
km·sec-1, d1=1.3 km, v2=5.94 km·sec-1, d2=5.3 km, v3=6.34 km·sec-1, d3=) and a best vp/vs ratio 
equal to 1.756. For improved hypocenters a set of station delays was used in addition with the 
one–dimensional velocity model as input to HYPO71 (revised, Lee and Lahr, 1975). In the loca-
tion procedure, the P– and S– arrivals errors were taken less than 0.3 s and 0.7 s, respectively. The 
final locations had an average root–mean–square residual (rms) of 0.10 s, a mean horizontal error 
of 1 km, and a mean error in the depth determination equal to 4 km. Depths range between 2–20 
km with a remarkable pick on 6–8 km. 

Magnitude determination for all the located events was performed from maximum amplitudes (a) 
and hypocentral distances (R), according to a relation of the form: 

321 cRlogcalogcM L   (1) 

where c1 was taken equal to 1.0, c2, which depends on the attenuation, was considered equal to 
1.199, that is a standard value for the territory of Greece and epicentral distances less than 100 km 
according to Scordilis (1985). The local magnitudes of 30 events commonly recorded by both the 
permanent and local seismological networks were used for the calculation of c3 in each seismol-
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ogical station of the temporary network. The local magnitudes of the microearthquakes were then 
transformed into equivalent moment magnitudes based on a relation suggested by Papazachos et 
al. (1997).  

The configuration of the network allowed determining reliable individual microearthquake focal 
mechanisms. All the single–event, lower–hemisphere focal mechanisms were determined, when 
more than 5 arrivals were available, using the FPFIT computer program (Reasenberg and Oppen-
heimer, 1985). In order to avoid misleading determination and to ensure the nodal plane con-
straints, the station azimuthal coverage as well as the distribution of the compressions and dilata-
tions, were taken into account. The above criteria deterred the focal mechanisms determination of 
all the recorded events, but the ones located inside the network. A total of 96 mechanisms were 
computed with a gap smaller than 180o sampling a minimum of three quadrants. Most of the reli-
able solutions in the study area exhibit either strike–slip or normal faulting. 

4. Results 

4.1. Spatial distribution of the seismicity 

The epicentral distribution of the located events is shown in Figure 4, where four different symbols 
were used to denote four different magnitude ranges. A complex spatial distribution appears with 
spatially distinct clusters, evidencing the existence of a diverse faulting pattern. The most dense 
cluster is located near Psara Island, where two groups were observed, the larger one striking 
NNW–SSE and the smaller one striking NNE–SSW. Minor clusters of smaller magnitude events 
are also observed in the sea area between Psara and Chios Islands, which in some cases define 
small active structures. The onshore seismicity is weak (M<3.0), whereas in the northern sea area 
an offshore cluster is observed with an event of M=4.3. The seismic activity is more intense in the 
Erithraea peninsula, along the western coast of Asia Minor, with several events of M>4.0. A tight 
cluster of less than 10 km radius was formed near the city of Tçesme, and one more adjacent to the 
east coastline of Erithraea Peninsula that continues to the east up to the Smyrne gulf.  

 

Fig. 4 Spatial distribution of the seismicity recorded by the local network.  

It is worth to note here the lack of seismicity in the offshore area to the south of Erithraea penin-
sula up to Chios Island. The elongated dimension of this area is almost 30 km and coincides with 
the meizoseismal area of the destructive 1881 earthquake with M=6.5 (Papazachos and Pa-
pazachou, 2003). This presents evidence for seismic quiescence prevailing on the associated south 
Chios fault even in microearthquake activity. 
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4.2. Focal mechanisms of the earthquakes 

The most reliable fault plane solutions determined from first–motion polarities for 96 events are 
shown in Fig. 5. Nearly all the focal mechanisms close to Psara Island and the sea area between 
Psara and Chios Islands show strike–slip faulting, whereas the focal mechanisms offshore and 
onshore Chios show transtensional or normal faulting. Nearby located events exhibit similarities in 
their fault plane solutions, and in particular, the events that seem to be associated with the same 
active structure. To detect possible spatial changes in the style of faulting we show focal mecha-
nisms grouped by style of faulting and belonging to the same spatial cluster. These mean focal 
mechanisms are summarized in Table 1 and shown in Fig. 6, along with the orientation of the axis 
of maximum extension (T–axis), which is prevalent in the study area. Although since the comple-
tion of the WWSSN in 1964, no strong events have been recorded in the study area and therefore 
focal mechanisms are not available, information on predetermined focal mechanisms of two strong 
earthquakes that occurred in nearby areas is used for comparison with the fault plane solutions 
determined in this study. 

  

Fig. 5 Fault plane solutions of the 96 events around Chios (left) and close to Psara (right) 
Islands. 

Table 1. Mean fault plane solutions for the seven clusters. 
Plane 1 Plane 2 Ρ axis Τ axis Area Lat. Long. 

φο δο λο φο δο λο φο δο φο δο 

Area 1 38.520 25.769 234 76 -171 142 82  -13  52  8 144 14 
Area 2 38.632 25.986 162 46  -70 315 47 -108 225 43  72 44 
Area 3 38.631 26.148  85 45  -77 249 47 -101 159 43 355 45 
Area 4 38.342 25.744 153 84   -5 244 84 -173 154  6  63  6 
Area 5 38.399 25.895 277 35 -116 129 59  -71  39 31 187 55 
Area 6 38.466 26.039  84 36  -80 254 55  -95 164 35 354 54 
Psara 38.514 25.584 141 80   -6 232 83 -169 142  7  51 10 

Mechanisms related to small–magnitude earthquakes are not usually associated with the finite slip 
on major faults and their slip vectors could be associated with the motion of randomly distributed 
preexisting faults, but P or T axes should be oriented as the main stress directions. Therefore, the 
direction of axis of maximum extension in the present case is a very useful parameter and is shown 
together with the mean focal mechanisms in Fig. 6. 

A cluster of 62 events was located adjacent to the southwestern coast of Psara Island, forming en 
elongated structure trending NW–SE (Fig. 5, right and mean mechanism in Fig. 6), evidencing that 
the nodal planes with this strike might be considered as the fault planes and that the sinistral 
strike–slip motion prevails in this area. Another cluster of 6 events off the southwestern coast of 
Chios Island seems to be the continuation of the former active structure (Fig. 5, left and mean 
mechanism in Fig. 6). The strike–slip faulting events forming a cluster off the northwestern coast 
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of Chios Island are distributed in a rather NE–SW lineament suggesting their association with the 
dextral strike–slip faults prevailing in the North Aegean Sea (Fig. 5, left and mean mechanism in 
Fig. 6) and in accordance with the 2001, M5.6 event (strike=244o, dip=79o, rake=–164o). The co-
existence of left–lateral and right–lateral strike–slip faulting or possibly conjugate faulting has also 
been observed in the western part of the Aegean Sea, where such activation was observed during 
the 2001 Skyros Island sequence (Karakostas et al., 2003). 

 

Fig. 6 Composite focal mechanisms corresponding to the seven clusters of microseismicity. 

West of Chios Island, the results suggest that oblique extension prevails (Fig. 5, left and mean 
mechanism in Fig. 6), while the cluster offshore the northern coast exhibits rather E–W extension 
(Fig. 5, left and mean mechanism in Fig. 6). The orientation of the mean T–axis determined from 
this cluster is positioned rather perpendicular to the ones determined from the rest clusters, imply-
ing biaxial extension. A tectonic association is possible between the normal faulting events located 
at the northern inland part of Chios (Fig. 5, left and mean mechanism in Fig. 6) with the Vronta-
dos–Karies fault as already found by the geological field observations. In the sea area north of the 
northeastern coast of Chios the determined 8 fault plane solutions clearly exhibit similar with the 
previous group normal faulting in almost ENE–WSW trending fault planes (Fig. 5, left and mean 
mechanism in Fig. 6). This mean fault plane solution is in agreement with the mechanism of the 
1969, M5.9 event (strike=100o, dip=60o, rake=–90o) that occurred eastwards on Erithraea Penin-
sula. 

In summary, the complex faulting pattern exhibits several distinctive seismotectonic features. 
First, the evidence of the left–lateral NW–SE trending strike–slip faults that seated orthogonal to 
the prevalent NE–SW dextral strike–slip faults in North Aegean Sea. Second, the transtensional 
faulting between strike–slip and normal faulting from west to east. Third, the active two almost 
parallel normal faulting structures, onshore and offshore Chios Island, in agreement with the stress 
pattern that holds in western Asia Minor. Fourth, the E–W extension offshore the northern coast of 
Chios Island that evinces the biaxial extension. Thus, from the above spatial distribution it is rea-
sonable to conclude that west of the Chios Island strike–slip faulting prevails, and going to the east 
through a transition zone of oblique normal faulting, biaxial extension on almost E–W or N–S 
normal faults is emerging. 

4.3. Geometry of the active structures 

In order to investigate further the geometry of the active structures we divided the region into 
seven rectangles comprising the seismicity clusters, shown in Fig. 7 (left) along with seismicity 
and the locations of cross sections. The sections, which are perpendicular to the mean trend of the 
seismicity and are deliberately chosen to be narrow to reveal details, were performed with front 
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projections of the focal mechanisms that were determined in each rectangle (Fig. 7, right). The 
thickness of the seismogenic layer comes to 15 km, with the vast majority of the hypocenters be-
ing between 5 and 10 km in all sections. The dips of the nodal planes are in good agreement with 
the mean dips of the clusters defined by the hypocenters alone. A summary of the above analysis is 
illustrated on the map of Fig. 8. 

 

Fig. 7 The seven clusters of the microseismicity circumscribed by rectangles (left part) and 
the corresponding cross sections (right part). 

 

Fig. 8 The identified active structures associated with the analysed microseismicity.  

5. Discussion and conclusions 

The purpose of this study is to characterize the active deformation onshore and offshore Chios 
Island. Numerous geological studies have been carried out in the broader Aegean region as well as 
in western Turkey, but poor detailed structural analysis has been done for the study area. On the 
other hand, seismological station coverage form the permanent seismological network was not 
adequate to permit a detailed seismological investigation. Our results show that a dense seismol-
ogical network is essential to detect and accurately locate microseismicity and then to image active 
structures in areas which either were not activated during the instrumental period or the historical 
record is incomplete. The microseismicity within the study area was lower than the average seis-
mic activity of the broader Aegean region during the local network operation. The largest local 
events occurred in Psara Island and offshore the northeastern coasts of Chios Island. Microseis-
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micity was completely absent on the south Chios fault where the 1881 event occurred, and hence 
this area still requires further investigation to reveal this fault configuration. 

In addition to the prevailing stress pattern in a certain area, faulting may occur on preexisting 
zones of weakness and therefore, the data set should contain focal mechanisms of diverse disloca-
tion types. The fault plane solutions determined in the present study exhibit a complex fault pattern 
including dextral and sinistral strike–slip motion, transtensional as well as biaxial extension. Biax-
ial extension not only in almost N–S but also in the orthogonal east–west direction has been sug-
gested for western Turkey by Westaway (1994) and Cihan et al. (2003) who thus explained the 
complex faulting there. In accordance with the findings of the present work are the results derived 
from the analysis of the seismic activity taking place within the Gulf of Sigarcik, 50 km southwest 
of Izmir (Aktar et al., 2007), in that the aftershock activity was clustered in two distinct zones, 
roughly perpendicular to each other. Fault plane solutions of the three major (M>5.4) events of the 
sequence are consistent with the orientation of both zones, striking NNW–SSE and NE–SW, re-
spectively, which form a conjugate strike slip system. This difference in the orientation of the ex-
tension for different sub areas suggests that the study area is affected by internal deformation, 
which controls the activation of the active structures and their faulting type. 
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